N-heterocyclic carbene-catalyzed 1,3-dipolar cycloaddition reactions: a facile synthesis of 3,5-di- and 3,4,5-trisubstituted isoxazoles.
نویسندگان
چکیده
A first example of organo-N-heterocyclic carbene (NHC) catalyzed click-type fast 1,3-dipolar cycloaddition of nitrile oxides with alkynes was developed for the regioselective synthesis of 3,5-di- and 3,4,5-trisubstituted isoxazoles. Triethylamine (Et(3)N) was employed as an effective base to generate both nitrile oxide and the organo-NHC catalyst in situ. This catalytic approach was used to attach a variety of substituents, including other biologically active fragments, onto the isoxazole ring to selectively design multinucleus structures. Further, we have also optimized the conditions for Cu(I)-free Sonogashira cross-coupling to obtain internal alkynes in high yields, which were subsequently used in cycloaddition. A catalytic cycle is proposed and the remarkable regiocontrol in the formation of isoxazoles was ascribed to a beneficial zwitterion intermediate developed by the interaction of the strongly nucleophilic organo-NHC catalyst with alkyne followed by nitrile oxide.
منابع مشابه
A Novel Strategy of Ugi-4CR/Huisgen 1,3-Dipolar Synthesis of 1H-1,2,3-Triazole-Modified Peptidoimetics
In this protocol, we report a novel approach for the synthesis of a new class of heterocyclic 1H-1,2,3-triazole-modified peptidomimetic compounds. The process consists of an Ugi four-component condensation reaction of amines, an isocyanide, an aldehyde and acids followed by a Huisgen 1,3-dipolar cycloaddition reaction with an azide group in the presence of a catalytic amount of CuSO4</...
متن کاملRhodium(II)-Catalyzed 1,3-Dipolar Cycloaddition Reactions
The rhodium(II)-catalyzed formation of 1,3-dipoles has played a major role in facilitating the use of the dipolar cycloaddition reaction in modern organic synthesis. This is apparent from the increasing number of applications of this chemistry for the construction of heterocyclic and natural product ring systems. This chapter initially focuses on those aspects of rhodium(II) catalysis that cont...
متن کاملLewis Acid and/or Lewis Base catalyzed [3+2] cycloaddition reaction: Synthesis of pyrazoles and pyrazolines
Abstract: A facile, 1,3-dipolar cycloaddition of ethyl diazoacetate (EDA) with various activated olefins including Baylis-Hillman adducts, activated and simple alkynes to afford 3,5-disubstituted pyrazolines and pyrazoles respectively in moderate to good yields, in high regioselective manner in the presence of Indium chloride and/or DABCO is reported. All the reactions were carried out under no...
متن کاملA Three-Component 1,3-Dipolar Cycloaddition Reaction of Azomethine Ylide for Synthesis of New Bis-spiro-oxindolo(pyrrolizidines/pyrrolidines) Derivatives
The development of multicomponent reactions (MCRs) designed to produce elaborate biologically active compounds has become an important area of research in organic, combinatorial, and medicinal chemistry. A comparative study of the synthesis of new bis-spiro-oxindolo(pyrrolizidines/pyrrolidines) ring systems by the cycloaddition of azomethine ylides generated by a decarboxylative route from sarc...
متن کاملA Three-Component 1,3-Dipolar Cycloaddition Reaction of Azomethine Ylide for Synthesis of New Bis-spiro-oxindolo(pyrrolizidines/pyrrolidines) Derivatives
The development of multicomponent reactions (MCRs) designed to produce elaborate biologically active compounds has become an important area of research in organic, combinatorial, and medicinal chemistry. A comparative study of the synthesis of new bis-spiro-oxindolo(pyrrolizidines/pyrrolidines) ring systems by the cycloaddition of azomethine ylides generated by a decarboxylative route from sarc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Organic & biomolecular chemistry
دوره 9 22 شماره
صفحات -
تاریخ انتشار 2011